Sea Ice Velocity Observed by HF Radar: Comparison with ADCP and Drifting Buoy Measurements

Wei Zhang¹, Naoto Ebuchi¹, Brian Emery², Feng Cheng³, Hiroto Abe¹, Takenobu Toyota¹, and Kunio Shirasawa¹

¹Institute of Low Temperature Science, Hokkaido University
²Marine Science Institute, University of California Santa Barbara
³Electronic Information School, Wuhan University
Review of HF radar sea ice measurement

- HF radar has been used for pack ice and iceberg detection in past 30 years, but it is not completely developed due to NO velocity comparison in details.

Lipa et al. (1977), Chan et al. (1997)
HF Radar Sites

Sea of Okhotsk

Japan

Russia

China

Sakhalin

Soya Strait

Sea of Japan

Hokkaido

Soya Warm Current

East Sakhalin Current

Sea ice (winter)
Previous Study of these radar for sea ice

- Shirasawa et al. (2013) used these radars to indirectly obtain sea ice **distribution**. HF radar provides surface currents data in open-water conditions, while areas with ‘no current’ can be identified as sea ice.

Mombetsu, Japan
Objective of This Study

Investigate sea ice direct measurement by HF ocean radar.

- Try to extract sea ice signal from HF radar raw data, and derive sea ice radial velocity and direction; (reported in 2014)
- Compare HF radar sea ice velocity with that from ADCP and drifting buoy;
- Analyze sea ice observation by HF ocean radar.
CODAR SeaSonde Radar Station

- Waveform: FMCW
- Center frequency: 24.56 MHz
- Detection range: 46.5 km
- Range resolution: 1.5 km
- Angular resolution: 5 deg.
Observed Range-Doppler Spectrum

Signal scattered from sea ice is significantly strong.
Earlier Part of This Study (Reported in 2014)

Sea ice radial velocity is roughly consistent with nearby current radial velocity.
ADCPs & Drifting Buoy Measurements
ADCP Sea Ice Velocity

Error velocity:

\[v_{err} = w_{12} - w_{34} \]

\[v_{err} \approx 0 \text{ m/s, sea ice} \]

\[v_{err} \text{ noisy, open water} \]

Figure 18. View facing an ADCP transducer. The layout is the same for both convex and concave transducers (see Figure 26).

ADCP: \[|v_{err}| \leq 1 \text{ cm/s} \]

Belliveau et al. (1990)
Sea Ice Velocity Comparison at NS04

(a) NS04 site

Radial Velocity (cm/s)

Julian Day in 2004

HF

ADCP

SNR (dB)
Radar Signal and Noise Floor at NS04

(a) NS04 site

Power (dBm)

Julian Day in 2004

Signal
Noise

16
Sea Ice Velocity Comparison at NS04

Sea ice velocities from ADCP and HF radar are high consistent.
Sea Ice Velocity Time Series at OS04

Radial Velocity (cm/s)

SNR (dB)

Julian Day in 2004

(b) OS04 site
Radar Signal and Noise Floor at OS04

(b) OS04 site

Power (dBm)

Julian Day in 2004

Signal
Noise
Sea ice velocities from ADCP and HF radar are **NOT** high consistent.
Sea Ice Velocity Time Series at OS06

(c) OS06 site

Radial Velocity (cm/s)

SNR (dB)

Julian Day in 2006
Radar Signal and Noise Floor at OS06

(c) OS06 site

Power (dBm)

Julian Day in 2004

Signal
Noise
Sea ice velocities from ADCP and HF radar are **NOT** high consistent.
Sea ice velocities from ADCPs and HF radar are roughly consistent.
Total Velocity Difference on SNR

Sea ice velocity difference trend decrease when SNR increases.
Sea ice velocities Root Mean Square Difference decrease when SNR increases.
Drifting Buoy Trace in 2004

\[\nu_i = \frac{\text{loc}(x_{i+1}, y_{i+1}) - \text{loc}(x_i, y_i)}{\Delta t} \]
Sea Ice Velocity Comparison for Buoy

Sea ice velocities from HF radar and drifting buoy are consistent.
Missing Data (1)

- Signal is too weak to be recognized from noise.
 - Strong Radio Frequency Interference (noise floor) masks sea ice signal,
 - Sea ice is too thin/small to scatter distinct signal,
 - Signal attenuates over sea ice rapidly.

\[f_0 = 24.5646 \text{ MHz} \]
Missing Data (2)

- Signal contaminated by HF ocean radar system interference.
- Signals is assumed to be no more than 2 at each Doppler point due to MUSIC algorithm.

![Graph showing Doppler frequency and power with interferenced velocity range]

Interferenced Velocity:
-3 cm/s < \(V_i \) < 3 cm/s

MUSIC algorithm: Antenna system with 3 sensors estimates no more than two signals at one Doppler point.
Summary

- HF ocean radar can observe sea ice motion, and obtain bearing angle and radial velocity.
- In nearshore, sea ice drift velocities obtained from HF ocean radar are consistent with that from ADCP and drifting buoy. The correlation is about 0.7 and 0.6, respectively, and the RMSD is about 21 cm/s.
- Low SNR induces inaccurate or missing data of sea ice measurement. It is mainly caused by RFI greatly increasing noise floor.
Thank you for your Attention

本研究纯属胡诌，如有雷同，不一定巧合！